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Ultrafast Technology

tons occur in quadratic nonlinear media and birefrin-
gent cubic nonlinear media.

In a series of works, an approach to find families of
stationary walking solitons has been reported and the
properties of optical walking solitons in two representa-
tive and important examples have been uncovered.!~
Namely, spatial solitons in quadratic nonlinear media in
the presence of Poynting vector walk-off, and temporal
vector solitons in birefringent optical fibers. In particu-
lar, solitons in second-harmonic generation geometries
are made out of the mutual trapping of the fundamen-
tal and second-harmonic beams, and when a soliton is
formed in the presence of Poynting vector walk-off, the
interacting beams drag each other and propagate stuck,
or locked together. Under such conditions a walking
soliton is formed, opening the possibility to specific
applications, some of which have already been experi-
mentally demonstrated.> The walking solitons display
features different from non-walking solitons, they can
exist under different conditions, have different shapes
and wavefronts, and carry different energies. Figure 1
(page 44) shows a tvpical example.

The important result is that the approach reported is
intended to be a general tool to uncover new families of
walking solitons in other scenarios. Because of their
very nature, walking solitons have potential applications
to all-optical switching and routing devices and to mul-
tiplexing techniques. Beyond optics, walking solitons
might be relevant to mechanisms of energy and infor-
mation transport in a variety of physical, chemical, and
biological systems.
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ULTRAFAST TECHNOLOGY

A Compact All-Solid-State Sub-5-fsec Laser

Andrius Baltuska and Maxim S. Pshenichnikov, Ultrafast Laser
and Spectroscopy Laboratory, Dept. of Chemistry, Univ. of
Groningen. Groningen, The Netherlands; Roébert Szipdcs.
Research Institute for Solid State Physics, Budapest, Hungary:
and Douwe A. Wiersma, Ultrafast Laser and Spectroscopy Lab-
oratory, Dept. of Chemistry, Univ. of Groningen, Groningen, The
Netherlands.

Recem developments in solid-state lasers,' chirp-

mirror technology,” and methods of pulse charac-
terization® made it possible to design an all-solid-state
laser that delivers sub-5-fsec pulses at a 1-MHz repeti-
tion rate.* Such extremely short light pulses at a high
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repetition rate are most suitable for spectroscopic appli-
cations in condensed phase, and in particular in nonlin-
ear optical studies of ultrafast chemical reaction dynam-
ics in solutions.
The basic recipe for generating ultrashort pulses con-
sists of four main ingredients:
B Generating a white-light continuum (WLC) with suf-
ficient spectral bandwidth;
B Measuring the spectral phase of the resulting WLC;
B Designing a compressor capable of phase correction
over the whole continuum bandwidth; and
® Determining the compressed pulse duration and its
phase.
In our setup, the required ultrabroad bandwidth of
WLC is produced upon injection of ~13-fsec, 35 nJ
pulses from a Millennia-pumped cavity-dumped Ti:sap-
phire laser into a single-mode fused silica fiber.* > Due

8 ‘
L (a) £
: 1
2 | |
2 b il
M%@M
o RV, Y
-30 -15 0 15 30
Time [fs]
1.0 F
(b) 5
ik
2 2
505 - 1 8
0.0 L—— 10
-30 -15 0 15 30
Time [f5]
Wavelength [nm]
1000 900 800 700 600
1.0 zc') | IR R G S S| T 5_:|_ D
oS )
v:-’—: "" 8
505 1 & dig. =
L= S 2
0.0 L1 -n/2

12500 15000

Energy [cm'1 ]

10000

Baltuska Figure 1. (a) Interferometric autocorrelation (circles are
experimental points, and the solid line is the fit). (b) Retrieved
intensity profile (filled contour) and phase (dashed line). (c) Mea-
sured spectrum of compressed pulse (filled contour) and retrieved
spectral phase (dashed line).



